If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+60x-60=0
a = 1; b = 60; c = -60;
Δ = b2-4ac
Δ = 602-4·1·(-60)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-16\sqrt{15}}{2*1}=\frac{-60-16\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+16\sqrt{15}}{2*1}=\frac{-60+16\sqrt{15}}{2} $
| 1,2x+4,2=3,0 | | x^2+60x-360=0 | | x^2+60x-960=0 | | a/2-14=20 | | 2/3(x)-5/12=-1 | | /(9x+7=10x-10) | | 7x+9=x+15 | | -8v+9=-5(v+3) | | -5(u+9)=5u-35 | | -9u+15=6(u-5) | | -9(v+7)=-6v-33 | | -9(v+7=-6v-33 | | ⅔x-⁵⁄₁₂=-1 | | -9+x=90 | | x+0.4=6 | | 12x^2+28x=15x^2-24x | | 400+d=-300 | | -1.1+m=-6.2 | | -2.2+j=6.6 | | (x+3.5)^2=−16.75 | | x⁸-2x⁴+1=0 | | 150=x+ | | j - 4 = 60 | | 8 j - 4 = 60 | | h + 8 = 38 | | h+8=38 | | g - 6 = 54 | | 4x+5+x^2=180 | | 4x+5+x2=180 | | 32x+12−2,5x=2x+30−6 | | (2x+4)+(4x-64)=180 | | 1.2x+x=0.8 |